2 research outputs found

    Decarbonizing Europe's power sector by 2050-Analyzing the economic implications of alternative decarbonization pathways

    No full text
    The European Union aims to reduce greenhouse gas emissions by 80-95% in 2050 compared to 1990 levels. The transition towards a low-carbon economy implies the almost complete decarbonization of Europe's power sector, which could be achieved along various pathways. In this paper, we evaluate the economic implications of alternative energy policies for Europe's power sector by applying a linear dynamic electricity system optimization model in over 36 scenarios. We find that the costs of decarbonizing Europe's power sector by 2050 vary between 139 and 633 (sic)(2010), which corresponds to an increase of between 11% and 44% compared to the total system costs when no CO2 reduction targets are implemented. In line with economic theory, the decarbonization of Europe's power sector is achieved at minimal costs under a stand-alone CO2 reduction target, which ensures competition between all low-carbon technologies. If, however, renewable energies are exempted from competition via supplementary renewable energy (RES-E) targets or if investments in new nuclear and CCS power plants are politically restricted, the costs of decarbonization significantly rise. Moreover, we find that the excess costs of supplementary RES-E targets depend on the acceptance of alternative low carbon technologies. For example, given a complete nuclear phase-out in Europe by 2050 and politically implemented restrictions on the application of CCS to conventional power plants, supplementary RES-E targets are redundant. While in such a scenario the overall costs of decarbonization are comparatively high, the excess costs of supplementary RES-E targets are close to zero. (C) 2013 Elsevier B.V. All rights reserved

    Energy policy scenarios to reach challenging climate protection targets in the German electricity sector until 2050

    No full text
    In this article we demonstrate how challenging greenhouse gas reduction targets of up to 95% until 2050 can be achieved in the German electricity sector. In the analysis, we focus on the main requirements to reach such challenging targets. To account for interdependencies between the electricity market and the rest of the economy, different models were used to account for feedback loops with all other sectors. We include scenarios with different runtimes and retrofit costs for existing nuclear plants to determine the effects of a prolongation of nuclear power plants in Germany. Key findings for the electricity sector include the importance of a European-wide coordinated electricity grid extension and the exploitation of regional comparative cost effects for renewable sites. Due to political restrictions, nuclear energy will not be available in Germany in 2050. However, the nuclear life-time extension has a positive impact on end consumer electricity prices as well as economic growth in the medium term, if retrofit costs do not exceed certain limits. (C) 2011 Elsevier Ltd. All rights reserved
    corecore